Equilibrium existence for zero-sum games and spatial models of elections
نویسنده
چکیده
A theorem on existence of mixed strategy equilibria in discontinuous zero-sum games is proved and applied to three models of elections. First, the existence theorem yields a mixed strategy equilibrium in the multidimensional spatial model of elections with three voters. A nine-voter example shows that a key condition of the existence theorem is violated for general finite numbers of voters and illustrates an obstacle to a general result. Second, the theorem provides a simple and self-contained proof of Kramer’s (1978) existence result for the multidimensional model with a continuum of voters. Third, existence follows for a class of multi-dimensional probabilistic voting models with discontinuous probability-of-winning functions.
منابع مشابه
Equilibrium Existence in Discontinuous Zero-Sum Games with Applications to Spatial Models of Elections
A theorem on existence of mixed strategy equilibria in discontinuous zero-sum games is proved and is applied to three models of elections. First, the existence theorem yields a mixed strategy equilibrium in the multidimensional spatial model of elections with three voters. A nine-voter example shows that a key condition of the existence theorem is violated for general finite numbers of voters a...
متن کاملNash Equilibrium Strategy for Bi-matrix Games with L-R Fuzzy Payoffs
In this paper, bi-matrix games are investigated based on L-R fuzzy variables. Also, based on the fuzzy max order several models in non-symmetrical L-R fuzzy environment is constructed and the existence condition of Nash equilibrium strategies of the fuzzy bi-matrix games is proposed. At last, based on the Nash equilibrium of crisp parametric bi-matrix games, we obtain the Pareto and weak Pareto...
متن کاملCompetition for a Majority
We define the class of two-player zero-sum games with payoffs having mild discontinuities, which in applications typically stem from how ties are resolved. For games in this class we establish sufficient conditions for existence of a value of the game and minimax or Nash equilibrium strategies for the players. We prove first that if all discontinuities favor one player then a value exists and t...
متن کاملA TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS
In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...
متن کاملPure strategy equilibria in symmetric two-player zero-sum games
We show that a symmetric two-player zero-sum game has a pure strategy equilibrium if and only if it is not a generalized rock-paper-scissors matrix. Moreover, we show that every finite symmetric quasiconcave two-player zero-sum game has a pure equilibrium. Further sufficient conditions for existence are provided. We point out that the class of symmetric two-player zero-sum games coincides with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Games and Economic Behavior
دوره 60 شماره
صفحات -
تاریخ انتشار 2007